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Abstract

The focus is on isotropic elastodamaging (softening) materials, where the damage parameter is expressed as a

function of the total strain. By integrating the mechanical work in the strain space along a stepwise holonomic loading

history, an incremental strain energy is obtained. A coaxiality condition for the incremental strain energy to be potential

is identified, and its implications on the associativity of the damage evolution are discussed. Under some hypotheses, the

increment of the mechanical work is shown to be minimum along strain radial paths. These results are used to construct

a multifield variational framework supporting finite element (nonlocal) formulations.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Quasi-brittle materials such as concrete and geomaterials are often defined as elastodamaging. Structural

elements made of elastodamaging materials exhibit a load–displacement response, where an elastic branch

is followed by a peak in correspondence of a critical displacement and, eventually, by a softening branch

along which the load decreases for increasing displacement. Such a structural behavior can be conveniently

modelled by means of softening stress–strain laws and assuming the damage as a strain driven phenome-

non. The material response is strongly path-dependent and globally nonholonomic. Hence, the entire

evolution of the structural response is usually analyzed as a sequence of incremental problems, each

concerning a configuration change from an initial known state due to a finite load step. The nonholonomic
response can then be transformed through an implicit backward Euler integration scheme into its stepwise

holonomic counterpart (Comi et al., 1992; Simo and Hughes, 1997; Tin-Loi and Xia, 2001). In the gen-

eralized standard materials theory (GSM), the damage rate is usually calculated through the rate flux laws

(Lemaitre and Chaboche, 1990). However, a recent and diffuse trend in finite element modelling for
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isotropic damage assumes that the total damage at a material point depends on the total current value that

a strain scalar, the equivalent strain, has ever experienced (Pijaudier-Cabot, 1995; de Borst et al., 1997;

Peerlings et al., 1996; Geers, 1997; Jir�asek and Patz�ak, 2002). The same concept has been also applied in

Beatty and Krishnaswamy (2000) to describe the stress-softening behavior of rubber-like materials.
It is well known that some undesired effects can arise in modeling softening materials. For instance, the

equilibrium equation loses ellipticity as the stress descends along the softening branch, and, consequently,

the numerical load–displacement response is affected by mesh-dependence. As a possible remedy, a non-

locality length can be introduced by having recourse to nonlocal definitions of the equivalent strain. Dating

back to the sixties, nonlocal approaches represent a currently active area of research of the finite element

literature: they preserve indeed the mesh-objectivity of the numerical response (Peerlings et al., 1996; de

Borst et al., 1997; Jir�asek and Patz�ak, 2002; Polizzotto et al., 1999; Benvenuti et al., 2002; Benvenuti and

Tralli, 2003). Among others, nonlocal formulations of implicit gradient type have been proposed, where the
nonlocal equivalent strain is assumed as an additional independent variable (Peerlings et al., 1996; Geers,

1997). At each iteration, the equilibrium equation is solved simultaneously with an implicit gradient

relationship expressing the nonlocal equivalent strain as a total strain function. These solving equations are

assumed a priori, and not derived from a variational formulation.

The basic ingredients of the present formulation for softening models are that: the damage is seen as a

strain function, a stepwise holonomic history is considered through an implicit backward Euler integration

scheme, and nonlocal definitions of the equivalent strain are introduced. In these circumstances, an

incremental strain energy function is derived, and subsequently used to construct variational formulations.
The relationships between the properties of the incremental strain energy, the associativity of the damage

law, and the symmetry of the tangent tensor are highlighted. Strain paths realizing the minimum increment

of mechanical work are considered, and the problem of the possible lack of convexity of the incremental

strain energy is also addressed.

The outline of the paper is as follows. Local definitions of the equivalent strain are first considered for

simplicity. The standard backward Euler scheme is employed to integrate the damage rate evolution law

along a finite strain step at a prescribed material point (Section 2). So a precise relationship between final

damage and final strain is established. The boundary value problem of a body obeying an elastodamaging
stress–strain law with strain-driven damage is studied (Section 2.4). The increment of the mechanical work

along a holonomic step is obtained by integrating the mechanical work in the strain space. Stationarity of

the increment of mechanical work is shown to provide the stress–strain relationships for elastodamaging

materials (Section 3). Incremental strain energies have been recently invoked for materials undergoing

finite strains and polycrystals (Ortiz and Repetto, 1999; Miehe et al., 2002), while pseudo-energies and

super-potential have been derived in the past in plasticity and contact mechanics (Carter and Martin,

1976; Mistakidis and Panagiotopoulos, 1998). Like in the GSM theory, here, the increment of the

mechanical work results to be the sum of two terms. The first term is path-independent, i.e. it depends
only on the current value of the strain. The second term coincides with the integral over the strain path of

the work performed by a stress-like term, denoted s, depending on the strain–damage derivative. The

presence of a path-dependent term agrees with previous formulations such as, for instance, Simo and Ju

(1987), where the total free energy at the current instant is assumed equal to the total free energy of the

initial instant plus the dissipation spent along the step. In Section 4, it is shown that, as expected,

symmetry of the tangent tensor ensures associativity of the damage evolution as well as the existence of a

strain potential. The definition of the equivalent strain influences the symmetry of the tangent tensor. This

result agrees with Carol et al. (1994). In the case of associative damage, an explicit expression of the strain
potential is obtained which is path-independent. Therefore, for this dissipative material an incremental

pseudo-potential exists. In the space of the internal variables, a radial path lemma has been previously

established by Nguyen (1993) and Petryk (2002). Here, radial paths in the strain space are shown to

realize the minimum increment of the mechanical work (Section 5). The prerequisite is that the path-
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dependent term fulfils suitable conditions as, for instance, a weak symmetry condition of the tangent

‘‘stiffness’’ associated to the stress s. Section 6 focuses on a one-dimensional bar subject to monotonic

tensile loading and in a homogeneous strain state. In this case, any equivalent strain definition guarantees

the existence of a strain potential. So, a few results worth noting can be appreciated. The first is that the
strain function is globally nonconvex in the strain. The second aspect is that the presence of the path-

dependent term in the increment of the mechanical work is crucial to restore the continuity of the stress–

strain law at incipient damage, and it can exercise a significant influence. The cases where the damage

depends on a nonlocal function of the strain field of integral or gradient type are addressed in Section 7. It

is here shown that, because the nonlocality operators are linear, the previous results for a local material

can be extended to the nonlocal case. The increment of the mechanical work above discussed is then used

to construct multifield variational formulations (Section 7.1). Their Euler–Lagrange equations are shown

to fully characterize the boundary value problem of a body of elastodamaging materials with strain-driven
damage also in the presence of nonlocal constraints.
2. A computational framework for isotropic damage

2.1. Local damage

The present analysis holds for small displacements and strains and rate-independent materials. The
symmetric second order strain tensor and the second order Cauchy stress tensor are here denoted by � and

r, respectively, whereas the symbol E indicates the fourth order elasticity tensor which exhibits the typical

major and minor symmetries. As usual, elastodamaging materials with isotropic damage are analyzed

whose stress–strain law takes the form
r ¼ ð1� xÞE�; ð1Þ

where the damage scalar x ranges from 0 for the sound material to 1 for a totally damaged material. The
stress–strain law (1) aims to capture the mechanical behavior of quasi-brittle materials, and it is typically

nonmonotonic: it displays an elastic path, followed by a peak and by a descending branch.

In the broad range of finite element models for isotropic elastodamaging materials, a popular class of

models exists, where the damage is assumed to be governed by the equivalent strain ��, a scalar function of

the strain, through the loading–unloading conditions
g ¼ ��� j6 0; _xP 0; g _x ¼ 0; ð2Þ

where g represents the damaging function and j the damage threshold. Because the damage evolution is not

monotonic during the loading history, i.e. _xP 0, the material behavior is globally nonholonomic.

Note that, in this context, the equivalent strain definition not only influences the damage sensitivity to

strain state but also practically coincides with the damage criterion itself (Jir�asek and Patz�ak, 2002). As in

plasticity, the rate of damage is ruled by
_x ¼ _k
dgd
dX

; ð3Þ
where _kP 0 is the damage multiplier, gd is a dissipation potential not necessarily coinciding with g, and X
denotes a variable (thermo)conjugated to x. For instance, one of the most widely used definition of the

equivalent strain is due to (Mazars and Pijaudier-Cabot, 1989):
��ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

½�i�2
vuut ; ð4Þ
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Fig. 1. Equivalent strain �� corresponding to Eq. (4) in a plane-strain state.
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where �i, i ¼ 1; 2; 3, are the principal strains and the brackets ½�� denote j�jþ�
2
. The surface corresponding to

Eq. (4) is represented in Fig. 1 for materials in a plane strain state. Instead Fig. 3 shows the contours at
�� ¼ 0:1%. It can be noted that any plane parallel to the ð�1; �2Þ-plane does not intersect the equivalent strain
surface in the negative strain domain. Because only the positive part of the principal strains appears, this

definition fits well materials where damage is mainly induced by tensile rather than compressive strains. If

this is not the case, alternative definitions are often considered, such as, for instance,
��ð�Þ ¼ r � 1

2rð1� 2mÞ I1ð�Þ þ
1

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2

ð1� 2mÞ2
I21 ð�Þ þ

2r

ð1þ mÞ2
J2ð�Þ

s
; ð5Þ
where m is the Poisson�s ratio, and I1ð�Þ and J2ð�Þ are the strain tensor invariants I1 ¼ trð�Þ and

J2 ¼ 3trð�2Þ � tr2ð�Þ (Peerlings et al., 1996; Geers, 1997). The scalar r denotes the ratio between the com-
pressive and the tensile peak stresses, so that if r tends to infinity no failure due to compression can occur.

Figs. 2 and 4 display, respectively, definition (5) in a plane strain state and the contour levels at �� ¼ 0:1% for

different values of the ratio r.
2.2. The incremental problem

Let us consider a body of volume V subject to a loading history during the interval of interest ½0; T � and
restrict our attention to a point of the body. A time-like parameter t is introduced such that the interval of

interest is discretized into N nonoverlapping intervals
½0; T � ¼
[N
k¼1

½tk�1; tk�: ð6Þ
At a generic initial instant tn, the state of the body is equilibrated, consistent with the constitutive law,

and characterized by the set of known variables, which are the displacement field un, a strain field �n, the
damage xn and the stress rn. After application of a load step, a new equilibrated and consistent state has to
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Fig. 2. Equivalent strain �� corresponding to Eq. (5) in a plane-strain state.
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Fig. 3. Contour of the equivalent strain �� ¼ 0:1% corresponding to Eq. (5) in plane strain; the material does not undergo damage in

compression.
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be calculated, characterized by the set of the updated values ðunþ1; �nþ1;xnþ1; rnþ1Þ. Following the standard

Backward Euler integration scheme, the loading function is evaluated at the final instant tnþ1 of the step,
gnþ1 ¼ ��ð�nþ1Þ � jnþ1; ð7Þ

where ��ð�nþ1Þ is the equivalent strain evaluated at the final instant tnþ1 (Simo and Hughes, 1997). In Eq. (7),

the damage threshold jnþ1 represents the highest value the equivalent strain has ever reached during the

entire loading history
jnþ1 ¼ sup
ti2½t0;tnþ1�

��ð�tiÞ: ð8Þ
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The loading–unloading conditions (2) become
gnþ1 ¼ ��ð�nþ1Þ � jnþ1; DxP 0; gnþ1Dx ¼ 0; ð9Þ

where Dx ¼ xnþ1 � xn.

As shown in Florez-Lopez et al. (1994), if the damage process is active and �� and j are strictly increasing

real valued functions of the strain, then the rate law (3) can be integrated over time to obtain a damage–

strain evolution law of the integrated form
xnþ1 ¼
0 if jnþ1 6 ji;
xðjnþ1Þ if ji 6 jnþ1 6 jf ;
1 if jnþ1 P jf :

8<
: ð10Þ
Integrated laws of evolution of the internal variables have been obtained for both damaging materials,

e.g. in Lemaitre and Chaboche (1990) by a step-by-step integration along monotonic loading, and plastic
materials, e.g. in Ortiz and Repetto (1999) by integration of the evolution equation of the internal variable

along ‘‘minimizing’’ deformation paths. In Eq. (10), ji and jf denote an initial and a final damage

threshold. Nevertheless, as argued in Carol et al. (1994), one can think of damage rules that cannot be

obtained by integration of a rate rule. This is very frequent in the FE-oriented literature. For instance, in

Peerlings et al. (1996) and Geers (1997), the exponential law
xnþ1 ¼
0 if jnþ1 < ji;

1� ji
jnþ1

� �b
jf�jnþ1

jf�ji

� �a
if ji < jnþ1 < jf ;

1 if jnþ1 > jf

8><
>: ð11Þ
has been used together with the asymptotic damage evolution law
xnþ1 ¼
0 if jnþ1 < ji;
1� ji

jnþ1
ð1� aþ ae�bðjnþ1�jiÞÞ otherwise;

�
ð12Þ
where the exponents a and b make it possible to get a wide set of constitutive laws.

Some preliminary comments on the above damage evolution law are at this stage necessary. For in-
stance, as soon as the damage threshold jnþ1 defined in Eq. (8) equals ji, the damage xnþ1 is a strictly

increasing function of jnþ1. This aspect emerges from Fig. 5, where the same initial damage threshold has
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been assumed for all the models. Moreover, the influence of the equivalent strain definitions on the stress–

strain laws should be illustrated to the sake of completeness. For this purpose, a one-dimensional tensile

bar has been considered under a homogeneous strain regime (see the captions of the figures below for what

concerns with the constitutive parameters). In particular, the one-dimensional stress–strain laws corre-

sponding to the damage laws of Fig. 5 are represented in Fig. 6 assuming a monotonic loading. As can be

deduced from Fig. 7, the equivalent strain definition (4) leads to a one-dimensional stress–strain law that is

elastic in compression. Instead, the stress–strain law corresponding to the equivalent strain definition (5)
exhibits a softening behavior in both tension and compression and is sensitive to the Poisson coefficient

(Fig. 8). Another relevant point is that the damage xnþ1 (10) is a continuous function of the threshold jnþ1,

whereas its first derivative is discontinuous at incipient damage jnþ1 ¼ ji, because, there, the left and right

derivatives of xnþ1 do not coincide. This can be observed, for instance, assuming the exponential damage

evolution (11), so that
Fig. 6. One-dimensional stress–strain laws corresponding to the data of Fig. 5 for a material with Young modulus E¼ 20,000 N/mm2

and a monotonic loading.
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dx
dj

����
nþ1

� dxnþ1

djnþ1

¼
0 if jnþ1 < ji;

ð1� xnþ1Þ b
�
þ a

jf�jnþ1

� �
if ji 6 jnþ1 6 jf ;

0 if jnþ1 > jf :

8<
: ð13Þ
As shown in Fig. 9 for fixed a ¼ 1 and increasing values of b, the discontinuity of the damage derivative

at incipient damage is strongly influenced by the choice of the model parameters. Moreover, the right

derivative can reach values several orders of magnitude larger than the left derivative as discussed in Section

6. The presence of the discontinuity of the damage derivative at incipient damage has been previously

pointed out in Fr�emond and Nedjar (1996). For instance, in this latter model, this problem is overcome by

setting the first derivative of the damage at j ¼ ji equal to the right one. In the following, functions jnþ1

and xnþ1 are required to be sufficiently regular for their directional derivatives to be continuous almost
everywhere.



Fig. 9. Derivative of the damage with respect to the threshold versus the threshold using the damage law (12) with a ¼ 1 and increasing b.
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2.3. Incremental damage integration

Two circumstances may occur, consisting either in an elastic step, where damage does not increase, or in

a damaging step, where damage increases.

• Elastic step: Suppose that
gnþ1 ¼ ��ð�nþ1Þ � jn 6 0: ð14Þ
The old damage threshold jn is replaced by the current one jnþ1, but they actually coincide:
jnþ1 ¼ jn: ð15Þ
According to Eq. (10), xnþ1 is a strictly increasing function of jnþ1. Therefore, the damage does not

increase,
xnþ1 ¼ xn: ð16Þ
• Damaging step: Otherwise, if
gnþ1 ¼ ��ð�nþ1Þ � jn > 0; ð17Þ
then the updated threshold jnþ1 calculates as
jnþ1 ¼ ��ð�nþ1Þ: ð18Þ
Because ��ð�nþ1Þ > jn, the damage increases, i.e. xnþ1 > xn, and
xnþ1 ¼ xðjnþ1Þ ¼ xð��ð�nþ1ÞÞ: ð19Þ
In both the above circumstances, the loading–unloading conditions are restored at the final instant. It
can be noted that, here, unlike in plasticity, the standard predictor–corrector format condenses into a

unique phase, because the loading function involves only scalar functions of the strain.
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Consequently, the damage threshold jnþ1 is a nondecreasing function of the strain of the type:
P1.

wh
jnþ1 ¼ maxfjn;��ð�nþ1Þg; ð20Þ

where jnþ1 ¼ jn in an elastic step, and jnþ1 ¼ ��ð�nþ1Þ in a damaging step. Because the damage is in turn

strictly increasing with jnþ1, it is a nondecreasing function of the strain:
xnþ1 ¼ maxfxn;xð��ð�nþ1ÞÞg: ð21Þ

As expected, the damage evolution is path-dependent and depends on the strain-history through xn. By

replacing the strain–damage evolution law xnþ1 (21) in the stress–strain relationship (1), the stress–strain

law at the instant tnþ1 writes
rnþ1 ¼ 1ð � xnþ1ÞE�nþ1: ð22Þ
2.4. The incremental boundary value problem

A body is given under volume forces bnþ1 applied on the volume V with boundaries oV . For simplicity, u

vanishes on oV and no other boundary conditions are considered. Let us assume that a strain function

Wð�nþ1Þ exists, such that the extended Hu–Washizu formulation
Fðunþ1; �nþ1; rnþ1Þ �
Z
V
Wð�nþ1Þ þ rnþ1 � ðrsunþ1 � �nþ1Þ � bnþ1 � unþ1 dV ð23Þ
may be constructed, where rs denotes the symmetric part of the strain tensor. For brevity, in the following,

it is set Wð�nþ1Þ � Wnþ1. The virtual variations of u and r are assumed sufficiently regular, i.e. û and r̂ are

such that any component ûi and r̂ij are of summable square (Simo and Hughes, 1997). The admissible

virtual variations of the strain �̂ satisfy the homogeneous boundary condition and are sufficiently regular

for the subsequent calculations to make sense. The first variations dF of the function (23)
dFðunþ1; �nþ1; rnþ1; ûÞ ¼
Z
V
rnþ1 � rsû� bnþ1 � ûdV ; ð24aÞ

dFðunþ1; �nþ1; rnþ1; �̂Þ ¼
Z
V

rnþ1

�
� dW

d�

����
nþ1

�
� �̂dV ; ð24bÞ

dFðunþ1; �nþ1; rnþ1; r̂Þ ¼
Z
V
ðrsunþ1 � �nþ1Þ � r̂dV ð24cÞ
are equated to zero for any set of admissible variations ðû; r̂; �̂Þ. For brevity of notation, here dW
d�
jnþ1 stands

for dWnþ1

d�nþ1
. The corresponding strong form equations lead to formulate the problem below:
Find Fðunþ1; �nþ1; rnþ1Þ s.t. solving dF ¼ 0 for any ðû; �̂; r̂Þ leads to
divrnþ1 þ bnþ1 ¼ 0; in V ;

rnþ1 ¼
dW
d�

����
nþ1

; in V ;

rsunþ1 ¼ �nþ1; in V ;

ere rnþ1 ¼ ð1� xnþ1ÞE�nþ1 and xnþ1 ¼ maxfxn;xð��ð�nþ1ÞÞg.

ð25aÞ

ð25bÞ

ð25cÞ
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Eq. (25) are the classical solving equations of boundary value problems for elastodamaging materials

obeying the constitutive model governed by Eq. (21).
3. The increment of mechanical work

In this section, the mechanical work is integrated along a strain step. This provides the increment of

the mechanical work, which results to be a strain function consisting of a path-independent and a path-

dependent term. Analogously, in the model based on strain driven damage (Simo and Ju, 1987), the
strain energy at the current instant has been assumed equal to the total free energy of the initial instant

plus the dissipation spent along the step. In the stress space, Ortiz has formulated the energy potential

describing damage in concrete as the sum of the elastic part and the energy amount required to open

microcracks (Ortiz, 1985). However, the present strain function is not an elastic strain potential in a

strict sense, because the material behavior is nonlinear. Nevertheless, several (pseudo-)elastic theories

have been developed for nonlinear materials: for instance, in the past, by Carter and Martin (1976) in

hardening plasticity, more recently, by Ortiz and Repetto (1999) in crystal plasticity, and by Miehe et al.

(2002) in a homogenization analysis of inelastic materials and for polycrystals in finite elasticity. By
integrating the constitutive relationships along deformation histories which minimize the work of

deformation, these latter Authors have shown that the resulting stress–strain relations take a pseudo-

elastic form, with the work of deformation itself supplying the appropriate strain energy potential (Ortiz

and Repetto, 1999). Moreover, within the nonsmooth mechanics framework, nonmonotonic stress–strain

laws have been related by Panagiotopoulos and coworkers to the existence of (nonconvex) strain super-

potentials (Mistakidis and Panagiotopoulos, 1998). In other contexts, biological tissues have been

modelled with suitable pseudo-strain energy functions, although they cannot have a strain energy in the

thermodynamic sense (Fung, 1993). Analogously, rubberlike materials undergo irreversible changes of
the mechanical properties after unloading. Nevertheless, their behavior has been described through

pseudo-energy functions of the finite strain tensor, where the total damage can be related to the finite

strain itself (Ogden, 2000).
3.1. Integration of the mechanical work

The evolution of the structural response is usually analyzed as a sequence of incremental problems, each

concerning a configuration change from a previously known state due to a finite increment of load step.

Each nonholonomic problem can then be transformed through an implicit backward difference integration
scheme into a stepwise holonomic problem (Comi et al., 1992; Simo and Hughes, 1997; Tin-Loi and Xia,

2001). Let
H � �ðtÞ; �ðtnÞ
n

¼ �n; �ðtnþ1Þ ¼ �nþ1; such that either _x ¼ 0 or _x > 0
o

ð26Þ
identify the set of all strain paths from �n to �nþ1 for t in ½tn; tnþ1�, along which the damage rate is strictly

monotonic. The attribute of holonomic will here connote strain paths in H. In this spirit, the material

behavior is assumed as stepwise holonomic. By Eq. (25b) and by the assumption that the damage evolves

according to (21), the strain function Wnþ1 is required to be such that its derivative with respect to �nþ1

coincides with rnþ1 (22). Therefore, for the purpose of solving Problem P1, one can restrict oneself to the
study of the problem below:



P2. Find Wnþ1 such that:

rnþ1 ¼
dW
d�

����
nþ1

;

rnþ1 ¼ ð1� xnþ1ÞE�nþ1;

where xnþ1 ¼ maxfxn;xð��ð�nþ1ÞÞg.

ð27aÞ

ð27bÞ
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If summable, the increment of the mechanical work can be integrated
DW ¼
Z tnþ1

tn

rðtÞ � _�ðtÞdt ð28Þ
along a strain path �ðtÞ 2 H where DW � Wnþ1 �Wn. Note that by integrating the mechanical work, only

the regular part of the increment of the mechanical work can be recovered, whereas its singular and jump

parts are lost (Kolmogorov and Fomin, 1970). Integration by parts of the right-hand-side of Eq. (28)

provides
DW ¼ ð1� xnþ1ÞYnþ1 � ð1� xnÞYn �
Z tnþ1

tn

Y ðtÞ d
dt

ð1� xðtÞÞdt; ð29Þ
where, for brevity,
Y ðtÞ � 1

2
�ðtÞ � E�ðtÞ; Yn �

1

2
�n � E�n; Ynþ1 �

1

2
�nþ1 � E�nþ1: ð30Þ
After simple calculations, Eq. (29) becomes
DW ¼ ð1� xnþ1ÞYnþ1 � ð1� xnÞYn þ
Z tnþ1

tn

Y ðtÞ _xðtÞdt: ð31Þ
Because _x ¼ dx
d�
� _� by the chain rule, the integral term can be written
Z tnþ1

tn

Y ðtÞ _xðtÞdt ¼
Z tnþ1

tn

Y ðtÞ dx
d�

� _�ðtÞdt: ð32Þ
Replacing the definition of Y (30a) in Eq. (31), the increment of the mechanical work (31) becomes
DW ¼ DUþ
Z tnþ1

tn

1

2

dx
d�

� ����
t

� E�ðtÞ
�
�ðtÞ � _�ðtÞdt; ð33Þ
where
DU � Unþ1 � Un; Unþ1 � ð1� xnþ1ÞYnþ1; Un � ð1� xnÞYn: ð34Þ

Eq. (33) makes it possible to identify the stress sðtÞ conjugated to the strain increment _�ðtÞ along the

considered paths and having constitutive equation
s ¼
0 if _x ¼ 0;

1

2

dx
d�

� E�

� �
� if _x > 0;

8<
: ð35Þ
where the t-dependence has been omitted for simplicity and the holonomy assumption along the strain step
has been used. In the GSM framework, the change of the mechanical work is frequently split into the
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change of free energy and the dissipation. Analogously, the work increment (33) can be written as the sum

of two contributions, i.e.
DW ¼ DUþ DC; ð36Þ

where DU is path-independent, whereas
DC �
Z tnþ1

tn

sðtÞ � _�ðtÞdt ð37Þ
is path-dependent.
Let us focus on the integral term of Eq. (32). Its argument is summable on the interval of integration

because Y is a positive definite quadratic form, and _x is bounded. Thus, the fundamental lemma of the

integral calculus can be applied (Kolmogorov and Fomin, 1970)
d

dtnþ1

Z tnþ1

tn

Y ðtÞ _xðtÞdt ¼ Ynþ1 _xðtnþ1Þ: ð38Þ
Let us write explicitly the strain functional Wnþ1 associated to the increment of mechanical work (36)
Wnþ1 ¼ Unþ1 � Un þ
Z �nþ1

�n

Y ð�Þ dx
d�

� d�þWn; ð39Þ
where interchangeability of the time-like parameter with the strain has been assumed and � ¼ �ðtÞ varies
from �n to �nþ1.This is possible if � in H (26) is an invertible function of t. By multiplying by dt

d�
jnþ1 both

sides of Eq. (38), one gets:
dDC
d�

����
nþ1

¼ Ynþ1

dx
d�

����
nþ1

: ð40Þ
Therefore, by differentiating the strain functional Wnþ1 with respect to �nþ1
dW
d�

����
nþ1

¼ ð1� xnþ1ÞE�nþ1 � Ynþ1

dx
d�

����
nþ1

þ Ynþ1

dx
d�

�����
nþ1

ð41Þ
leads to the stress–strain law (1). SoWnþ1 turns out to be the strain energy associated to the stress rnþ1 along

those strain paths in H such that the strain-time dependence is invertible. That solves Problem P2. Note

that the tangent tensor Hnþ1 can be calculated as
Hnþ1 ¼
dr

d�

����
nþ1

¼ ð1� xnþ1ÞE� E�nþ1 �
dx
d�

����
nþ1

: ð42Þ
The positive definiteness of the tangent elastoplastic tensor ensures stability of the material. However, in

the case of softening stress–strain laws, the tangent tensor Hnþ1 is not expected to be positive definite.

Explicit expressions of the tangent tensor analogous to Eq. (42) were derived in Lubarda and Krajcinovic

(1995) starting from rate-type constitutive relationships and in the more general case of anisotropic damage

for quasi brittle materials.
4. Potential existence and associativity

A directionally differentiable functional Wð�Þ is the strain potential of rð�Þ if and only if rð�Þ ¼ rWð�Þ,
where rWð�Þ denotes the gradient of W at �. Existence of a strain potential and associativity of the damage

evolution can be deduced as a consequence of the major symmetry property of the tangent tensor (Hill,
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1959). The problem whether the strain energy W associated to the strain r represents the strain potential of

r can be studied as an inverse problem in the calculus of variations. According to Oden and Reddy (1976), a

necessary and sufficient condition for r to be potential is that the bilinear functional drð�; �1Þ � �2, where dr
denotes the directional differential drð�; �1Þ of r at � in the direction �1, is symmetric with respect to �1 and
�2 for each �:
drð�; �1Þ � �2 ¼ drð�; �2Þ � �1: ð43Þ
If the symmetry condition (43) holds, then the strain functional Wnþ1 Eq. (39) is also an incremental
potential for the stress rnþ1 (22) and it is independent of the chosen path of integration (Lubarda and

Krajcinovic, 1995). The directional differential drð�; �1Þ calculates as
drð�; �1Þ ¼
d

dt
ðrð�þ t�1ÞÞ

����
t¼0

¼ � dx
d�

� �1
� �

E�þ ð1� xð�þ t�1ÞÞ
����
t¼0

E�1: ð44Þ
Therefore, by the symmetry of E
drð�; �iÞ � �j ¼ � dx
d�

� �i
� �

�j � E�þ 1ð � xð�ÞÞ�j � E�i; ð45Þ
where i 6¼ j, i; j ¼ 1; 2. By Eq. (45) and by the symmetry of E, Eq. (43) holds if an only if
dx
d�

� �1
� �

� � E�2ð Þ ¼ dx
d�

� �2
� �

ð� � E�1Þ ð46Þ
for any �1 and �2. Eq. (46) is equivalent to state that the fourth order tensor dx
d�
� E� exhibits major sym-

metry:
dx
d�

� E� ¼ E�� dx
d�

: ð47Þ
Eq. (47) implies the symmetry of both the stress tensor s (36) and the tangent modulus of the constitutive

stress–strain law (22) Hnþ1. The major symmetry of the algorithmic tangent tensor Hnþ1 plays an important

role in the choice of the equation solver in numerical computations of boundary value problems. In par-

ticular, the symmetry condition (47) holds when:

• the strain tensor reduces to a scalar;

• the second order tensors dx
d�

and E� are coaxial.

The first assertion is trivial, the second circumstance is commented in the section below.

4.1. Associative damage

Coaxiality of the tensors dx
d�

and E� means here that
dx
d�

¼
X6
i¼1

aiei; E� ¼
X6
i¼1

biei; ð48Þ
where ei is an orthonormal basis of S, the space of the symmetric second order tensors. In a standard GSM

framework, Carol et al. (1994) have shown that the above coaxiality condition (47) implies associativity of

the damage law in the strain space. Damage flux laws of associative type occur when the increment of the
damage is proportional to the gradient of the damage surface. This simplification is generally not

acceptable in the presence of materials with a highly dilatant behavior such as geomaterials. In the latter
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case, nonassociative damage flux laws should be considered and the results reported in this section do not

hold.

The following equivalent strain definitions:

• �� ¼ mY (Ju, 1989; de Borst et al., 1997),

• �� ¼ m
ffiffiffiffiffiffi
2Y

p
(Simo and Ju, 1987),

where m is a positive scalar, satisfy the coaxiality (symmetry) condition (47) and thus imply associative

damage. Other examples of models where the equivalent strain definition fulfils the coaxiality condition (47)

can be found in Benallal et al. (1986) and Neilsen and Schreyer (1992). As pointed out in Carol et al. (1994),

the equivalent strain definitions of Eqs. (4) and (5) do not satisfy the symmetry condition (47). Let the

coaxiality condition be satisfied by assuming
dx
d�

¼ aE�: ð49Þ
In Eq. (49), according to the hypothesis of holonomic behavior within the strain-step, a is any positive

real number, such that a vanishes when _x vanishes and is greater than 0 when _x does not vanish. Eq. (49)

ensures that the damage evolution is of associative type. Then, the integral term DC (37)
Z �nþ1

�n

aYE�d� ¼ 1

2
aðY 2

nþ1 � YnÞ ð50Þ
results to be path-independent. In synthesis, when the above coaxiality condition (49) holds, the increment

of the mechanical work along a strain path is path-independent, but depends only on the initial and final
value of the strain. Moreover, the increment can be written as
DW ¼ DUþ 1
2
aðY 2

nþ1 � Y 2
n Þ if _x > 0;

DU if _x ¼ 0

(
ð51Þ
along holonomic damaging steps. By the hypothesis (49),
rnþ1 ¼
dW
d�

����
nþ1

¼ ð1� xnþ1Þ
dY
d�

����
nþ1

� dx
d�

�����
nþ1

Ynþ1 þ Ynþ1

adY
d�

�����
nþ1

¼ ð1� xnþ1ÞE�nþ1; ð52Þ
so that DW (51) is the potential of the stress rnþ1.
5. Strain radial paths as minimizers of DW

In associative hardening elastoplasticity, the standard predictor–corrector scheme can be deduced from a
convex minimization problem where the positive definiteness of the tangent modulus and the convexity of

the complementarity energy are assumed (Simo and Hughes, 1997). On the contrary, this result cannot be

extended to nonassociative hardening plasticity and softening plasticity. In the present class of softening

elastodamaging materials, positive definiteness of the tangent tensor is not ensured and the strain energy

can be nonconvex, so that it is not simple to find an explicit expression of the complementary energy.

However, here, some results are presented which do not require positive definiteness of the tangent modulus

and global convexity of the change of mechanical work. In particular, it is shown that the path dependent

term DC can be minimized along a radial strain path provided that suitable additional conditions are
satisfied. This result agrees with the radial path lemma proposed by Nguyen (1993) in the space of the

internal variables and later extended by Petryk (2002).
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An indirect strain path is considered starting from �n and leading to the final strain increment

D� ¼ �nþ1 � �n. Following an analogous procedure in Petryk (2002), let us linearize the path-dependent

term around �n as follows:
s � � ¼ sn � _�þ D� � ds
d�

����
n

_�þ oðkD�k2Þ; ð53Þ
where sn ¼ sð�nÞ. So the change DC can be split into a first-order and a second-order contribution
DC ¼ D1Cþ D2Cþ oðkDtk2Þ; ð54Þ
where
D1C ¼
Z tnþ1

tn

sn � _�ðtÞdt; D2C ¼
Z tnþ1

tn

D� � ds
d�

����
n

_�ðtÞdt: ð55Þ
Attention is now focused on the argument of the second order term D2C
2D� � ds
d�

����
n

_�ðtÞ ¼ ds

d�

����
n

_�ðtÞ � D�þ
Z t

tn

ds

d�

����
n

_�ðtÞ � _�ðsÞds

¼ ds

d�

����
n

_�ðtÞ � D�þ
Z t

tn

ds

d�

����
n

_�ðsÞ � _�ðtÞdsþ Ca; ð56Þ
where
Ca ¼
Z t

tn

ds

d�

����
n

_�ðtÞ � _�ðsÞ
�

� ds

d�

����
n

_�ðsÞ � _�ðtÞ
�
ds: ð57Þ
Furthermore, by the application of the Leibniz�s rule it follows from (56) that
D� � ds
d�

����
n

_�ðtÞ ¼ 1

2

d

dt

Z t

tn

ds

d�

����
n

_�ðsÞ � D�dsþ 1

2
Ca: ð58Þ
By definitions (55), the second order dissipation writes
D2C ¼ 1

2

Z tnþ1

tn

ds

d�

����
n

_�ðtÞ � D�dt þ 1

2
Ca: ð59Þ
Let us consider now within the set H the radial strain path
�rðtÞ ¼ �n þ
t � tn

tnþ1 � tn
ð�nþ1 � �nÞ: ð60Þ
The path-dependent term evaluated to the second-order along a radial path departing from �n, after

straightforward integration is specified as the sum of
Dr
1C ¼ sn � D�; Dr

2C ¼ 1

2
D� � ds

d�

����
n

D�: ð61Þ
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It can be proved that:
If the path-dependent function DC satisfies the symmetry condition

Ca ¼ 0;

where Ca is defined by Eq. (57), and the argument of DC is convex in _�, then DC
evaluated to the second order is minimized on a radial path

DCPDr
1Cþ Dr

2Cþ oðkDtk2Þ:

ð62Þ

ð63Þ
This can be shown by observing that the path dependent term becomes
DC ¼
Z tnþ1

tn

sn � _�dt þ
1

2

ds

d�

����
n

_�ðtÞ � D�ðtÞdt þ oðkDtk2Þ ¼
Z tnþ1

tn

s �n

�
þ 1

2
D�

�
� _�ðtÞdt þ oðkDtk2Þ: ð64Þ
Replacing �n with �n þ 1
2
D�, and by the convexity property of the argument of DC, it follows that
DCP s �n

�
þ 1

2
D�

�
� D�þ oðkDtk2Þ ¼ sn � D�þ

1

2

ds

d�

����
n

D� � D�þ oðkDtk2Þ; ð65Þ
which in view of Eq. (61) proves Eq. (63).
Let us define the change of strain energy along a radial path
DrW ¼ DUþ Dr
1Cþ Dr

2Cþ oðkDtk2Þ: ð66Þ
If Eq. (63) holds, in view of the fact that DU is path-independent, the increment of mechanical work DW in

H is never less than the the increment of mechanical work evaluated on a radial strain path
DWPDWr: ð67Þ
Eq. (67) holds if the argument of DC is convex in _� for every �, and under hypothesis (62). Therefore, it

has been shown that among all possible strain paths emanating from �n to �nþ1 and belonging to H, the

radial strain path �r realizes the minimum change of the mechanical work DW in the set H. However,

although radial strain paths have been shown to be less energy-consuming than nonradical paths, they can
still be unstable. Thus stability theorems such as the ones applied in Nguyen (1993) and Petryk (2002)

cannot be applied to the present class of materials.

Moreover, it is possible to establish a relationship between the symmetry condition (62) and the coax-

iality condition (49) for the existence of a strain potential. To this purpose, let us observe that the rate of the

stress s can be written as
_s ¼ Z _�; ð68Þ
where Z denotes the tangent tensor associated to the stress s
Z ¼ dx
d�

� E�þ Y
d2x
d�2

: ð69Þ
The symmetry condition (62) can be rewritten as
Z t

tn

dðsðtÞ; _�ðsÞÞds ¼
Z t

tn

dðsðsÞ; _�ðtÞÞds; ð70Þ
which is equivalent to a weak condition for the potential of the stress s to exist along the step ½tn; t�. In
particular, if the fourth order tensor Z is symmetric, then Eq. (70) holds; suppose in addition that the
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matrix d2x
d�2

is symmetric, then the tensor dx
d�
� E� is symmetric. The converse is not generally true, i.e. the only

symmetry of the tangent tensor H (47) does not imply the symmetry of the tangent tensor Z (69). In

conclusion, the coaxiality condition (49) is equivalent to the symmetry condition of the tensor Z (69)

provided that the fourth order tensor d2x
d�2

is symmetric. For instance, this circumstance occurs in case of
associative damage governed by the coaxiality property (49), because d2x

d�2
results to be proportional to E, the

elasticity tensor.
6. Nonconvex potentials in a one-dimensional case

Amonotonic tensile loading history is prescribed for a one-dimensional bar of infinite length. Let the bar

be subject to a positive homogeneous strain state �. The loading history is holonomic by hypothesis, that is
the damage is assumed to evolve monotonically during the loading. Hence the stepwise holonomic

approximation is not invoked. The equivalent strain definition (4) is assumed, which specializes here to
�� ¼ �. Because all the quantities involved in Eq. (47) are scalars, the symmetry condition (47) is satisfied.

The damage rule (12) (Peerlings et al., 1996; Geers, 1997)
xð�Þ ¼
0 if ji 6 �;

1� ji
�

� 	b jf��
jf�ji

� �a
if ji < �6jf ;

1 if � > jf

8><
>: ð71Þ
is adopted. According to Eq. (71), the first derivative of the damage becomes
dx
d�

¼
0 if � < ji;

ð1� xð�ÞÞ b
�
þ a

jf��

� �
if ji 6 �6 jf ;

0 if � > jf :

8<
: ð72Þ
Replacing Eqs. (71) and (72) in Eq. (31) the path dependent term with a ¼ b ¼ 1 writes
Z �

0

dx
d~�

1

2
E~�2 d~� ¼

0 if � < ji;
1
2

Ejijf
jf�ji

ð�� jiÞ if ji 6 �6 jf ;
1
2

Ejijf
jf�ji

ðjf � jiÞ if � > jf :

8<
: ð73Þ
Finally, the explicit analytical expression of the strain potential (31) becomes
Wð�Þ ¼

1
2
E�2 if � < ji;

1� xð�Þð Þ 1
2
E�2 þ 1

2

Ejijf
jf�ji

ð�� jiÞ if ji 6 �6 jf ;

ð1� xð�ÞÞ 1
2
E�2 þ 1

2

Ejijf
jf�ji

ðjf � jiÞ if � > jf :

8><
>: ð74Þ
The stress conjugated to the strain potential (31) is the expected one
r ¼ dW
d�

¼ ð1� xð�ÞÞE� ð75Þ
and can be visualized in Fig. 10 (continuous line), where the Young�s modulus E¼ 20,000 N/mm2, and the

initial and final thresholds are ji ¼ 0:0002 and jf ¼ 0:0125.
As shown in Fig. 11A and B, in the present one-dimensional example, the strain energy W (74) is convex

in � in the elastic range, when � < ji, and concave in � as soon as the damaging process begins, at � ¼ ji.

Note however that the slope of W at incipient damage is continuous, see Fig. 11B (continuous line). The
strain potential (74) is similar to the strain super-potential considered by Mistakidis and Panagiotopoulos



(A) (B)

Fig. 10. (A) Strain energies W Eq. (74) (continuous line) and W1 Eq. (76) (dashed line) versus � in the one-dimensional tensile bar.

(B) Details of W and W1 versus � at incipient damage in the one-dimensional tensile bar.

(A) (B)

Fig. 11. (A) Stresses r ¼ dW=d� (continuous line) and r1 ¼ dW1=d� (dashed line) versus the strain � in the one-dimensional tensile bar

(B) Detail of r and r1 versus � at incipient damage; if the integral term (73) is included or neglected, r and r1 are continuous and

discontinuous at j ¼ ji.
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(1998) for a nonmonotonic stress–strain law and to the free energy potential proposed for a microscopic
cohesive stress–displacement law in Nguyen and Ortiz (2002). If convexity is lacking, equilibrium states are

not necessarily stable and the knowledge of the second order variation of the strain potential would be

required to go farther and capture (local) minimizers. In several contexts, nonconvex strain energies have

been recognized to reflect the presence of multiple phases or microstructures, for instance Miehe et al.

(2002) and Ortiz and Repetto (1999). The present results highlight the common basis underlying damaging

and multiphase materials.



Fig. 12. The term 1=2dx=d�E�2 versus � in the one-dimensional tensile bar with a ¼ 1, and b increasing; the discontinuity at � ¼ ki
reflects the discontinuity of dx=d�.

3186 E. Benvenuti / International Journal of Solids and Structures 41 (2004) 3167–3191
To highlight the practical influence of the argument of the integral at the l.h.s. of Eq. (73), the latter term

has been plotted in Fig. 12 for fixed a ¼ 1 and b increasing from 1 to 4. A discontinuity occurs at � ¼ ji

which becomes sharper as b increases. If the path-dependent term (73) is neglected, the strain function
W1ð�Þ ¼ ð1� xð�ÞÞ 1
2
E�2 ð76Þ
is obtained, see Fig. 11. A detail of the strain function W1 at incipient damage reveals that its slope changes

at incipient damage, Fig. 11B. The stress conjugated to W1
r1 ¼
dW1

d�
¼ ð1� xð�ÞÞE�� dx

d�

1

2
E�2 ð77Þ
has been plotted in Fig. 10A (continuous line). As shown in Fig. 10B, r1 exhibits a discontinuity at incipient

damage due to the discontinuity of the first derivative of the damage (Fig. 9). Consequently, the presence of

DC is necessary in order to reproduce physically consistent stress–strain relationships. Note that in the

GSM context, the free energy functional is usually assumed to be convex in both damage and strain.

Therefore, once one of the variables is fixed, the minimization with respect to the other variable can be

performed (e.g. Florez-Lopez et al., 1994). By the integration of higher order stress–strain laws, in Chang

et al. (2002), strain energies have been obtained where, besides the standard terms, also derivatives of the

damage with respect to the strain appear, but without an explicit analysis of the numerical influence of these
damage derivatives on the stress–strain law.
7. Nonlocal materials

In the context of nonlocal models for elastodamaging materials, many authors have considered the

damage parameter to be governed by nonlocal definitions of the equivalent strain (Pijaudier-Cabot, 1995;

de Borst et al., 1997; Jir�asek and Patz�ak, 2002). For instance, a nonlocal integral equivalent strain field f��g
can be obtained by an integral average of the local field ��
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f��gðxÞ ¼ 1

VrðxÞ

Z
V
wðx; yÞ��ðyÞdy: ð78Þ
In Eq. (78), wðx; yÞ is a weighting function, for instance the Gauss function e�k2kx�yk2=‘2 , where k is a

parameter and ‘ indicates a characteristic length over which w vanishes. The symbol
VrðxÞ ¼
Z
V
wðx; yÞdy ð79Þ
is the reference volume. Besides integral models, also several successful formulations based on implicit

gradient techniques have been developed in Peerlings et al. (1996) and Geers (1997) by expanding in Taylor

series the integrand of (78) under the hypothesis that the integration domain is symmetric. The nonlocal

variable f��g is so approximated through the following implicit gradient formula:
f��gðxÞ � ��ðxÞ þ c2r2f��gðxÞ; ð80Þ
together with the boundary conditions
rf��gðxÞ � n ¼ 0; ð81Þ
on the boundary oV , where r2 is the spatial Laplacian operator and c is a diffusive length that is related to

the characteristic length ‘. In particular, these Authors have proposed multifield formulations where the

nonlocal definition of the equivalent strain is assumed as an independent variable and the implicit gradient

definition (80) is solved together with the equilibrium equation. These multifield formulations based on

implicit gradient formulations are particularly appreciated since they have been revealed to be more

computationally stable than other gradient techniques (Geers, 1997). For instance, approximating f��g by

Eq. (80) as an independent field reduces the occurrence of oscillations of the computed stress profiles with

respect to other (explicit) gradient formulations.
Because both the integral and the derivative operators are linear operators, all the results established in

the previous sections can be extended to the case of nonlocal definitions of the equivalent strain. To this

purpose, let the damage and its threshold be nondecreasing functions of the nonlocal equivalent strain, i.e.,

respectively,
xnþ1 ¼ maxfxn;xðf��gnþ1Þg; jnþ1 ¼ maxfjn; f��gnþ1g; ð82Þ
where f��gð�nþ1Þ � f��gnþ1. The loading function becomes
gnþ1 ¼ f��gnþ1 � jnþ1; ð83Þ
where relationships (82) have been assumed.

7.1. An enhanced general variational framework

The results obtained in the previous sections are here embedded into variational formulations for

elastodamaging materials of the nonlocal type. A body is assumed obeying an elastodamaging stress–strain

law, where the damage and its threshold are governed by the nonlocal equivalent strain according to Eqs.

(82) and (83). The strain energy function (23) writes
Wnþ1 ¼ ð1� xnþ1ÞYnþ1 � ð1� xnÞYn þ
Z �nþ1

�n

ox
of��g

of��g
o�

Y d�þWn: ð84Þ
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Let us consider the nonlocal relationships of integral and implicit gradient type (78) and (80) and define a

nonlocal functional R of the strain
Rð�nþ1ÞðxÞ ¼
1

VrðxÞ
R
V wðx; yÞ��ð�nþ1ðxÞÞdy;

f��gð�nþ1ðxÞÞ ¼ ��ð�nþ1ðxÞÞ þ c2r2f��gð�nþ1ðxÞÞ in V ;

(
ð85Þ
where the first alternative refers to an integral nonlocal relationship whereas the second one describes an

implicit gradient formulation. In definition (85), the strain function ��nþ1 is any of the equivalent strain

definitions reported in Section 2, and the field f��gnþ1 is assumed to be an additional independent variable.

Let us omit below the x-dependence of the nonlocal operators. The equality
f��gnþ1 ¼ Rð�nþ1Þ ð86Þ
represents a constraint between the nonlocal field f��gnþ1 and the strain field ��nþ1. It is then possible to

introduce a multifield functional containing the strain functional (39) where the constraint (86) is weakly

enforced by a Lagrangian multiplier field knþ1. So the following Lagrangian functional depending on

Xnþ1 � ðunþ1; �nþ1; rnþ1; f��gnþ1; knþ1Þ
LðXnþ1Þ ¼ FðXnþ1Þ þ
Z
V
knþ1ðf��gnþ1 �Rð�nþ1ÞÞdV ð87Þ
can be considered. In Eq. (87),
FðXnþ1Þ ¼
Z
V
Unþ1 � Un þ

Z �nþ1

�n

dx
d�

Y d�þWn � bnþ1 � unþ1 þ rnþ1 � ðrsunþ1 � �nþ1ÞdV ð88Þ
is the Hu–Washizu functional (23) written in the case of nonlocal definition of the equivalent strain, and, by

the chain rule, dx
d�

� ox
of��g

of��g
o�
. Equating to zero the first variations of function (87) leads to the weak forms of

the stationarity equations
dLðXnþ1; ûÞ ¼
Z
V
rnþ1 � rsûnþ1 � bnþ1 � ûdV ¼ 0; ð89Þ

dLðXnþ1; �̂Þ ¼
Z
V

 
ð1� xnþ1ÞE�nþ1 þ

dx
d�

�����
nþ1

Ynþ1 � rnþ1 � knþ1

dRð�Þ
d�

�����
nþ1

!
� �̂dV ¼ 0; ð90Þ

dLðXnþ1; r̂Þ ¼
Z
V
ðrsunþ1 � �nþ1Þ � r̂dV ¼ 0; ð91Þ

dLðXnþ1; f�̂gÞ ¼
Z
V

 
� ox
of��g

�����
nþ1

Ynþ1 þ knþ1

!
�̂�dV ¼ 0; ð92Þ

dLðXnþ1; k̂Þ ¼
Z
V
ðf��gnþ1 �Rð�nþ1ÞÞk̂dV ¼ 0; ð93Þ
for any admissible set of variations ðû; �̂; r̂; �̂�; k̂Þ. The strong forms of the stationarity conditions of L
realize Problem P3 below:



P3. Find Xnþ1 such that on V :

divrnþ1 þ bnþ1 ¼ 0;

rnþ1 ¼ ð1� xnþ1ÞE�nþ1 þ
ox
of��g

������
nþ1

of��g
o�

������
nþ1

Ynþ1 � knþ1

dRð�Þ
d�

������
nþ1

;

rsunþ1 ¼ �nþ1;

knþ1 ¼
ox
of��g

������
nþ1

Ynþ1;

f��gnþ1 ¼ Rð�nþ1Þ;

where xnþ1 ¼ maxfxn;xðf��gnþ1Þg.

ð94aÞ

ð94bÞ

ð94cÞ

ð94dÞ

ð94eÞ
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By replacing Eqs. (94d) and (94e) in Eq. (94b), the stress rnþ1 Eq. (22) is recovered. Thus, the system of

Eq. (94) condenses into the concise form:
P4. Find Xnþ1 such that on V

divrnþ1 þ bnþ1 ¼ 0;

f��gnþ1 �Rð�nþ1Þ ¼ 0;

where

• rnþ1 ¼ ð1� xnþ1ÞE�nþ1,

• rsunþ1 ¼ �,
• xnþ1 ¼ maxfxn;xðf��gnþ1Þg.

ð95aÞ

ð95bÞ
The above Lagrangian formulation can be discretized according to the FE method and leads to a
symmetric solving system (Benvenuti et al., submitted for publication). It can be also shown that the

boundary condition (81), typically assumed in the implicit gradient formulations, can be obtained via

variational arguments from the stationarity conditions of the Lagrangian functional (87). The same set of

equations of Problem P4 has been proposed in a broad number of multifield formulations of implicit

gradient type by Peerlings et al. (1996) and Geers (1997). Consequently, the Lagrangian approach presented

in this section can provide a variational basis for these existing formulations.
8. Conclusions

At a material point, a relationship between total damage and total strain is deduced by considering a

stepwise holonomic damage evolution. By integrating the mechanical work in the strain space, the fol-
lowing results have been reached.
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• Incremental strain energies have been determined for elastodamaging materials; in particular, a path-

independent strain energy has been obtained under the hypothesis of associative damage evolution (Sec-

tions 3 and 4).

• A coaxiality condition for the incremental strain energy to be potential has been derived, and its connec-
tions with the associativity of the damage evolution have been discussed (Section 4).

• Among all admissible strain paths, the radial one has been shown to minimize the increment of the

mechanical work in the strain space, provided that a suitable additional symmetry condition, anyway

related to the coaxiality condition, is fulfilled (Section 5).

• For a one-dimensional bar under a strictly monotonic loading, the present elastodamaging materials

may be regarded as nonlinear elastic materials with nonconvex strain energy, in analogy with microstruc-

tured and geometrically nonlinear materials (Section 6).

• A new multifield Lagrangian formulation has been presented providing a unified variational framework
for nonlocal materials (Section 7).
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