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Abstract

The focus is on isotropic elastodamaging (softening) materials, where the damage parameter is expressed as a
function of the total strain. By integrating the mechanical work in the strain space along a stepwise holonomic loading
history, an incremental strain energy is obtained. A coaxiality condition for the incremental strain energy to be potential
is identified, and its implications on the associativity of the damage evolution are discussed. Under some hypotheses, the
increment of the mechanical work is shown to be minimum along strain radial paths. These results are used to construct
a multifield variational framework supporting finite element (nonlocal) formulations.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Quasi-brittle materials such as concrete and geomaterials are often defined as elastodamaging. Structural
elements made of elastodamaging materials exhibit a load—displacement response, where an elastic branch
is followed by a peak in correspondence of a critical displacement and, eventually, by a softening branch
along which the load decreases for increasing displacement. Such a structural behavior can be conveniently
modelled by means of softening stress—strain laws and assuming the damage as a strain driven phenome-
non. The material response is strongly path-dependent and globally nonholonomic. Hence, the entire
evolution of the structural response is usually analyzed as a sequence of incremental problems, each
concerning a configuration change from an initial known state due to a finite load step. The nonholonomic
response can then be transformed through an implicit backward Euler integration scheme into its stepwise
holonomic counterpart (Comi et al., 1992; Simo and Hughes, 1997; Tin-Loi and Xia, 2001). In the gen-
eralized standard materials theory (GSM), the damage rate is usually calculated through the rate flux laws
(Lemaitre and Chaboche, 1990). However, a recent and diffuse trend in finite element modelling for
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isotropic damage assumes that the total damage at a material point depends on the total current value that
a strain scalar, the equivalent strain, has ever experienced (Pijaudier-Cabot, 1995; de Borst et al., 1997;
Peerlings et al., 1996; Geers, 1997; Jirasek and Patzak, 2002). The same concept has been also applied in
Beatty and Krishnaswamy (2000) to describe the stress-softening behavior of rubber-like materials.

It is well known that some undesired effects can arise in modeling softening materials. For instance, the
equilibrium equation loses ellipticity as the stress descends along the softening branch, and, consequently,
the numerical load—-displacement response is affected by mesh-dependence. As a possible remedy, a non-
locality length can be introduced by having recourse to nonlocal definitions of the equivalent strain. Dating
back to the sixties, nonlocal approaches represent a currently active area of research of the finite element
literature: they preserve indeed the mesh-objectivity of the numerical response (Peerlings et al., 1996; de
Borst et al., 1997; Jirasek and Patzak, 2002; Polizzotto et al., 1999; Benvenuti et al., 2002; Benvenuti and
Tralli, 2003). Among others, nonlocal formulations of implicit gradient type have been proposed, where the
nonlocal equivalent strain is assumed as an additional independent variable (Peerlings et al., 1996; Geers,
1997). At each iteration, the equilibrium equation is solved simultaneously with an implicit gradient
relationship expressing the nonlocal equivalent strain as a total strain function. These solving equations are
assumed a priori, and not derived from a variational formulation.

The basic ingredients of the present formulation for softening models are that: the damage is seen as a
strain function, a stepwise holonomic history is considered through an implicit backward Euler integration
scheme, and nonlocal definitions of the equivalent strain are introduced. In these circumstances, an
incremental strain energy function is derived, and subsequently used to construct variational formulations.
The relationships between the properties of the incremental strain energy, the associativity of the damage
law, and the symmetry of the tangent tensor are highlighted. Strain paths realizing the minimum increment
of mechanical work are considered, and the problem of the possible lack of convexity of the incremental
strain energy is also addressed.

The outline of the paper is as follows. Local definitions of the equivalent strain are first considered for
simplicity. The standard backward Euler scheme is employed to integrate the damage rate evolution law
along a finite strain step at a prescribed material point (Section 2). So a precise relationship between final
damage and final strain is established. The boundary value problem of a body obeying an elastodamaging
stress—strain law with strain-driven damage is studied (Section 2.4). The increment of the mechanical work
along a holonomic step is obtained by integrating the mechanical work in the strain space. Stationarity of
the increment of mechanical work is shown to provide the stress—strain relationships for elastodamaging
materials (Section 3). Incremental strain energies have been recently invoked for materials undergoing
finite strains and polycrystals (Ortiz and Repetto, 1999; Miehe et al., 2002), while pseudo-energies and
super-potential have been derived in the past in plasticity and contact mechanics (Carter and Martin,
1976; Mistakidis and Panagiotopoulos, 1998). Like in the GSM theory, here, the increment of the
mechanical work results to be the sum of two terms. The first term is path-independent, i.e. it depends
only on the current value of the strain. The second term coincides with the integral over the strain path of
the work performed by a stress-like term, denoted 7, depending on the strain—-damage derivative. The
presence of a path-dependent term agrees with previous formulations such as, for instance, Simo and Ju
(1987), where the total free energy at the current instant is assumed equal to the total free energy of the
initial instant plus the dissipation spent along the step. In Section 4, it is shown that, as expected,
symmetry of the tangent tensor ensures associativity of the damage evolution as well as the existence of a
strain potential. The definition of the equivalent strain influences the symmetry of the tangent tensor. This
result agrees with Carol et al. (1994). In the case of associative damage, an explicit expression of the strain
potential is obtained which is path-independent. Therefore, for this dissipative material an incremental
pseudo-potential exists. In the space of the internal variables, a radial path lemma has been previously
established by Nguyen (1993) and Petryk (2002). Here, radial paths in the strain space are shown to
realize the minimum increment of the mechanical work (Section 5). The prerequisite is that the path-



E. Benvenuti | International Journal of Solids and Structures 41 (2004) 3167-3191 3169

dependent term fulfils suitable conditions as, for instance, a weak symmetry condition of the tangent
“stiffness” associated to the stress 7. Section 6 focuses on a one-dimensional bar subject to monotonic
tensile loading and in a homogeneous strain state. In this case, any equivalent strain definition guarantees
the existence of a strain potential. So, a few results worth noting can be appreciated. The first is that the
strain function is globally nonconvex in the strain. The second aspect is that the presence of the path-
dependent term in the increment of the mechanical work is crucial to restore the continuity of the stress—
strain law at incipient damage, and it can exercise a significant influence. The cases where the damage
depends on a nonlocal function of the strain field of integral or gradient type are addressed in Section 7. It
is here shown that, because the nonlocality operators are linear, the previous results for a local material
can be extended to the nonlocal case. The increment of the mechanical work above discussed is then used
to construct multifield variational formulations (Section 7.1). Their Euler—Lagrange equations are shown
to fully characterize the boundary value problem of a body of elastodamaging materials with strain-driven
damage also in the presence of nonlocal constraints.

2. A computational framework for isotropic damage
2.1. Local damage

The present analysis holds for small displacements and strains and rate-independent materials. The
symmetric second order strain tensor and the second order Cauchy stress tensor are here denoted by € and
o, respectively, whereas the symbol [ indicates the fourth order elasticity tensor which exhibits the typical
major and minor symmetries. As usual, elastodamaging materials with isotropic damage are analyzed
whose stress—strain law takes the form

6= (1 —w)ke, (1)

where the damage scalar w ranges from 0 for the sound material to 1 for a totally damaged material. The
stress—strain law (1) aims to capture the mechanical behavior of quasi-brittle materials, and it is typically
nonmonotonic: it displays an elastic path, followed by a peak and by a descending branch.

In the broad range of finite element models for isotropic elastodamaging materials, a popular class of
models exists, where the damage is assumed to be governed by the equivalent strain €, a scalar function of
the strain, through the loading—unloading conditions

g=e—x<0, ©®>0, gi=0, )

where g represents the damaging function and x the damage threshold. Because the damage evolution is not
monotonic during the loading history, i.e. @ > 0, the material behavior is globally nonholonomic.

Note that, in this context, the equivalent strain definition not only influences the damage sensitivity to
strain state but also practically coincides with the damage criterion itself (Jirasek and Patzak, 2002). As in
plasticity, the rate of damage is ruled by

. . dgd
=, 2% 3
RTo) (3)
where 4 > 0 is the damage multiplier, g4 is a dissipation potential not necessarily coinciding with g, and Q
denotes a variable (thermo)conjugated to w. For instance, one of the most widely used definition of the
equivalent strain is due to (Mazars and Pijaudier-Cabot, 1989):
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Fig. 1. Equivalent strain € corresponding to Eq. (4) in a plane-strain state.

where ¢;, i = 1,2, 3, are the principal strains and the brackets [] denote % The surface corresponding to

Eq. (4) is represented in Fig. 1 for materials in a plane strain state. Instead Fig. 3 shows the contours at
€ = 0.1%. It can be noted that any plane parallel to the (e, ¢;)-plane does not intersect the equivalent strain
surface in the negative strain domain. Because only the positive part of the principal strains appears, this
definition fits well materials where damage is mainly induced by tensile rather than compressive strains. If
this is not the case, alternative definitions are often considered, such as, for instance,

et PR | (r—1)226 2r .
49 =gl )+27’\/(1—2v)211( )+(1+v)2J2( & )

where v is the Poisson’s ratio, and I;(e) and J(e€) are the strain tensor invariants [, = #tr(e) and
Jy = 3tr(€*) — tr*(e) (Peerlings et al., 1996; Geers, 1997). The scalar » denotes the ratio between the com-
pressive and the tensile peak stresses, so that if » tends to infinity no failure due to compression can occur.
Figs. 2 and 4 display, respectively, definition (5) in a plane strain state and the contour levels at € = 0.1% for
different values of the ratio r.

2.2. The incremental problem

Let us consider a body of volume ¥ subject to a loading history during the interval of interest [0, 7] and
restrict our attention to a point of the body. A time-like parameter 7 is introduced such that the interval of
interest is discretized into N nonoverlapping intervals

N
[0,7) = M1, 4. (6)

k=1

At a generic initial instant ¢,, the state of the body is equilibrated, consistent with the constitutive law,
and characterized by the set of known variables, which are the displacement field u,, a strain field €,, the
damage w, and the stress a,. After application of a load step, a new equilibrated and consistent state has to



E. Benvenuti | International Journal of Solids and Structures 41 (2004) 3167-3191 3171

Fig. 2. Equivalent strain ¢ corresponding to Eq. (5) in a plane-strain state.
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Fig. 3. Contour of the equivalent strain € = 0.1% corresponding to Eq. (5) in plane strain; the material does not undergo damage in
compression.

be calculated, characterized by the set of the updated values (u,, €,11, W11, 6,.1). Following the standard
Backward Euler integration scheme, the loading function is evaluated at the final instant ¢, of the step,

gn+1 = E(enﬂ) — Kp+1, (7)
where €(e,. 1) is the equivalent strain evaluated at the final instant ¢,,; (Simo and Hughes, 1997). In Eq. (7),
the damage threshold «x,.| represents the highest value the equivalent strain has ever reached during the
entire loading history

Kpp1 = sup €(e,). (8)

1€[t,tn41]
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Fig. 4. Contours of the equivalent strain € = 0.1% corresponding to Eq. (5) setting v = 0.2 and varying r in plane-strain; the material is
more (resp. less) resistant in compression than in traction for » > 1 (resp. < 1), but damageable for both loadings.

The loading—unloading conditions (2) become
En+1 = E<€n+1) — Kn+1, Aw = 07 gnJrlAw = 07 (9)

where Aw = @, — w,.

As shown in Florez-Lopez et al. (1994), if the damage process is active and € and « are strictly increasing
real valued functions of the strain, then the rate law (3) can be integrated over time to obtain a damage—
strain evolution law of the integrated form

0 if K, < x5,
W1 = a)(KnJrl) if Ki < Kn+1 < Kr, (10)
1 if Kyt1 = K.

Integrated laws of evolution of the internal variables have been obtained for both damaging materials,
e.g. in Lemaitre and Chaboche (1990) by a step-by-step integration along monotonic loading, and plastic
materials, e.g. in Ortiz and Repetto (1999) by integration of the evolution equation of the internal variable
along “minimizing” deformation paths. In Eq. (10), x; and x; denote an initial and a final damage
threshold. Nevertheless, as argued in Carol et al. (1994), one can think of damage rules that cannot be
obtained by integration of a rate rule. This is very frequent in the FE-oriented literature. For instance, in
Peerlings et al. (1996) and Geers (1997), the exponential law

0 , if K, < K,
. o .
WDyl = 1— (ﬁ) (%) if k; < Kp+1 < Kr, (11)
1 if K1 > Kr

has been used together with the asymptotic damage evolution law

L if K, < K,
Ontl =) 1 — L5 (1 — o0 4 ae Pe17%))  otherwise,

Kn+1

(12)

where the exponents o and § make it possible to get a wide set of constitutive laws.

Some preliminary comments on the above damage evolution law are at this stage necessary. For in-
stance, as soon as the damage threshold x,,; defined in Eq. (8) equals x;, the damage w, | is a strictly
increasing function of x,.;. This aspect emerges from Fig. 5, where the same initial damage threshold has
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Fig. 5. Comparison of damage laws versus the threshold using x; = 0.0002; in Eq. (12) (P96) « = 0.96, = 350 (P98), 1y = 0.0125 in
Eq. (11) (G97) « =5, f = 0.8, 1y = 0.0125.

been assumed for all the models. Moreover, the influence of the equivalent strain definitions on the stress—
strain laws should be illustrated to the sake of completeness. For this purpose, a one-dimensional tensile
bar has been considered under a homogeneous strain regime (see the captions of the figures below for what
concerns with the constitutive parameters). In particular, the one-dimensional stress—strain laws corre-
sponding to the damage laws of Fig. 5 are represented in Fig. 6 assuming a monotonic loading. As can be
deduced from Fig. 7, the equivalent strain definition (4) leads to a one-dimensional stress—strain law that is
elastic in compression. Instead, the stress—strain law corresponding to the equivalent strain definition (5)
exhibits a softening behavior in both tension and compression and is sensitive to the Poisson coefficient
(Fig. 8). Another relevant point is that the damage w,,; (10) is a continuous function of the threshold x, 1,
whereas its first derivative is discontinuous at incipient damage x,,; = k;, because, there, the left and right
derivatives of w,,; do not coincide. This can be observed, for instance, assuming the exponential damage
evolution (11), so that

o[N/mm?

x10°
€
Fig. 6. One-dimensional stress—strain laws corresponding to the data of Fig. 5 for a material with Young modulus E = 20,000 N/mm?

and a monotonic loading.
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Fig. 7. One-dimensional stress—strain law using the equivalent strain (4) and the damage law (12) with » = 10, o = 0.96, f = 350 and a
monotonic loading.

1

Q
L
~
° v=0

v=0.1

-20

-0.15 € 0 0.05

Fig. 8. Normalized one-dimensional stress—strain law (5) using the damage law (12), with » = 10, & = 0.96, f =350, v=0 or v = 0.1
and with a monotonic loading.

doo doo 0 if K, < K,
_ —+1 B .
E = dK” = (1 - (U,H,]) (l; + Kf*iurl ) lf Ki g K,H,l g Kl‘, (13)
1 ' .
nl " 0 if 1,01 > K.

As shown in Fig. 9 for fixed o = 1 and increasing values of f3, the discontinuity of the damage derivative
at incipient damage is strongly influenced by the choice of the model parameters. Moreover, the right
derivative can reach values several orders of magnitude larger than the left derivative as discussed in Section
6. The presence of the discontinuity of the damage derivative at incipient damage has been previously
pointed out in Fremond and Nedjar (1996). For instance, in this latter model, this problem is overcome by
setting the first derivative of the damage at k¥ = k; equal to the right one. In the following, functions &,
and w,, are required to be sufficiently regular for their directional derivatives to be continuous almost
everywhere.
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Fig. 9. Derivative of the damage with respect to the threshold versus the threshold using the damage law (12) with o« = 1 and increasing /5.

2.3. Incremental damage integration

Two circumstances may occur, consisting either in an elastic step, where damage does not increase, or in

a damaging step, where damage increases.

e FElastic step: Suppose that

8n+1 = E(€t1+1) — K, < 0.

The old damage threshold x, is replaced by the current one x,,, but they actually coincide:

Knt1 = Ky.

(14)

(15)

According to Eq. (10), w, is a strictly increasing function of «,,;. Therefore, the damage does not

increase,
Wy = Wy

o Damaging step: Otherwise, if

En+1 = E(€n+l) — Ky > Oa

then the updated threshold «,,, calculates as

Knt1 = E(en-H)-

Because €(€,.1) > k,, the damage increases, i.e. w,.1 > w,, and

Wyt = w(KnH) = w(E(EnH))-

(16)

(17)

(18)

(19)

In both the above circumstances, the loading—unloading conditions are restored at the final instant. It
can be noted that, here, unlike in plasticity, the standard predictor—corrector format condenses into a

unique phase, because the loading function involves only scalar functions of the strain.
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Consequently, the damage threshold «,. is a nondecreasing function of the strain of the type:

|Kn+l = maX{Kn>E(€n+l)}a| (20)

where x,,1 = K, in an elastic step, and «,,; = €(€,.1) in a damaging step. Because the damage is in turn
strictly increasing with «,,, it is a nondecreasing function of the strain:
w1 = max{w,, w(e(€,11))}] (21)

As expected, the damage evolution is path-dependent and depends on the strain-history through w,. By
replacing the strain—-damage evolution law w,,; (21) in the stress—strain relationship (1), the stress—strain
law at the instant ¢,,; writes

Opyl = (1 - (Un+1)[E€n+1~ (22)

2.4. The incremental boundary value problem

A body is given under volume forces b, | applied on the volume ¥ with boundaries 0V. For simplicity, u
vanishes on 0V and no other boundary conditions are considered. Let us assume that a strain function
¥(e,.1) exists, such that the extended Hu—Washizu formulation

r97(“n+17 6n+136n+1) = / T(€n+1) + Opyl (Vsun+l - 6n+l) - bn+l s Uyt dv (23)
v

may be constructed, where V* denotes the symmetric part of the strain tensor. For brevity, in the following,
it is set ¥(€,11) = Wur1- The virtual variations of u and ¢ are assumed sufficiently regular, i.e. i and ¢ are
such that any component i#; and 6;; are of summable square (Simo and Hughes, 1997). The admissible
virtual variations of the strain € satisfy the homogeneous boundary condition and are sufficiently regular
for the subsequent calculations to make sense. The first variations 6% of the function (23)

5=g;(un+l y €Ent1y Opyl; ﬁ) = / [PER I Via — bn+1 : ﬁdV7 (248')
Vv
. d¥ .
5y(un+l7 €141, 0n+1; 6) = Opnil — 7 : EdV, (24b)
4 de n+1
5y(un+la €n+176n+1;&) = /(vsun+l - €n+1) -edV (240)
vV
are equated to zero for any set of admissible variations (i, 4, €). For brevity of notation, here 4|, | stands
for ‘:f:—”:l‘. The corresponding strong form equations lead to formulate the problem below:

P1. Find Z (u,;1, €,11,6,41) s.t. solving 07 = 0 for any (u, €, 6) leads to

diVO',H,] + b,H,] == 07 iIl V, (25a)
dy .
Opil = d— , 1N V7 (ZSb)
n+1
VSun-}—l = €41, in V7 (25C)

where 6,1 = (1 — w,,1)E€,y1 and 0, = max{w,, v(€(€,.1))}.
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Eq. (25) are the classical solving equations of boundary value problems for elastodamaging materials
obeying the constitutive model governed by Eq. (21).

3. The increment of mechanical work

In this section, the mechanical work is integrated along a strain step. This provides the increment of
the mechanical work, which results to be a strain function consisting of a path-independent and a path-
dependent term. Analogously, in the model based on strain driven damage (Simo and Ju, 1987), the
strain energy at the current instant has been assumed equal to the total free energy of the initial instant
plus the dissipation spent along the step. In the stress space, Ortiz has formulated the energy potential
describing damage in concrete as the sum of the elastic part and the energy amount required to open
microcracks (Ortiz, 1985). However, the present strain function is not an elastic strain potential in a
strict sense, because the material behavior is nonlinear. Nevertheless, several (pseudo-)elastic theories
have been developed for nonlinear materials: for instance, in the past, by Carter and Martin (1976) in
hardening plasticity, more recently, by Ortiz and Repetto (1999) in crystal plasticity, and by Miehe et al.
(2002) in a homogenization analysis of inelastic materials and for polycrystals in finite elasticity. By
integrating the constitutive relationships along deformation histories which minimize the work of
deformation, these latter Authors have shown that the resulting stress—strain relations take a pseudo-
elastic form, with the work of deformation itself supplying the appropriate strain energy potential (Ortiz
and Repetto, 1999). Moreover, within the nonsmooth mechanics framework, nonmonotonic stress—strain
laws have been related by Panagiotopoulos and coworkers to the existence of (nonconvex) strain super-
potentials (Mistakidis and Panagiotopoulos, 1998). In other contexts, biological tissues have been
modelled with suitable pseudo-strain energy functions, although they cannot have a strain energy in the
thermodynamic sense (Fung, 1993). Analogously, rubberlike materials undergo irreversible changes of
the mechanical properties after unloading. Nevertheless, their behavior has been described through
pseudo-energy functions of the finite strain tensor, where the total damage can be related to the finite
strain itself (Ogden, 2000).

3.1. Integration of the mechanical work

The evolution of the structural response is usually analyzed as a sequence of incremental problems, each
concerning a configuration change from a previously known state due to a finite increment of load step.
Each nonholonomic problem can then be transformed through an implicit backward difference integration
scheme into a stepwise holonomic problem (Comi et al., 1992; Simo and Hughes, 1997; Tin-Loi and Xia,
2001). Let

H

{e(t), €(t,) = €,, €(t,11) = €,41, such that either » =0 or & > O} (26)

identify the set of all strain paths from €, to €, for ¢ in [t,,2,,1], along which the damage rate is strictly
monotonic. The attribute of holonomic will here connote strain paths in #. In this spirit, the material
behavior is assumed as stepwise holonomic. By Eq. (25b) and by the assumption that the damage evolves
according to (21), the strain function ¥, is required to be such that its derivative with respect to €,
coincides with @, (22). Therefore, for the purpose of solving Problem P1, one can restrict oneself to the
study of the problem below:



3178 E. Benvenuti | International Journal of Solids and Structures 41 (2004) 3167-3191

P2. Find ¥, such that:

o =F| (27a)
de n+1
O, = (1 - wn+l)|£€n+l7 (27b)

where w,; = max{w,, w(e(€,.1))}

If summable, the increment of the mechanical work can be integrated
Lyt
AW:/ o(t) - €(t)dt (28)
n

along a strain path €(¢) € # where AY = ¥,.; — ¥,. Note that by integrating the mechanical work, only
the regular part of the increment of the mechanical work can be recovered, whereas its singular and jump
parts are lost (Kolmogorov and Fomin, 1970). Integration by parts of the right-hand-side of Eq. (28)
provides

tyyl
AY = (1 —w,11) Y1 — (1 — )Y, —/ Y(t)%(l — o(t))dt, (29)
th
where, for brevity,
1 1 1

Y(t) = Ee(t) - Ee(2), Y, = 36 Ee,, Y, = FEntl Ee,pr- (30)

After simple calculations, Eq. (29) becomes
tytl
A'P:(l—w,,H)Y,,H—(l—w,,)Yn—k/ Y(f)o(r)de. (31)
tn
Because @ = ‘é—‘g - € by the chain rule, the integral term can be written
thy1 tygl
/ Ymmgm:/))wﬂﬂf@m. (32)
" 0 de
Replacing the definition of Y (30a) in Eq. (31), the increment of the mechanical work (31) becomes
1 /d
AW:A¢+/' (w @&@)dgrwm, (33)
. 2\ de|,

where

A(p = (pn+l - (pm ¢rH»l = (1 - wn+1)Yn+la d)n = (1 - wn)Yn- (34)

Eq. (33) makes it possible to identify the stress z(¢) conjugated to the strain increment é(¢) along the
considered paths and having constitutive equation

0 it & =0,
t=<¢1/dw . (35)
E(a@ﬂ;ﬁ)ﬁ lf(l)>0,

where the 7-dependence has been omitted for simplicity and the holonomy assumption along the strain step
has been used. In the GSM framework, the change of the mechanical work is frequently split into the
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change of free energy and the dissipation. Analogously, the work increment (33) can be written as the sum
of two contributions, i.e.

AW = Ad + AT, (36)

where A® is path-independent, whereas
thyl
Al = / o) - &(¢) dt (37)
tIY

is path-dependent.

Let us focus on the integral term of Eq. (32). Its argument is summable on the interval of integration
because Y is a positive definite quadratic form, and @ is bounded. Thus, the fundamental lemma of the
integral calculus can be applied (Kolmogorov and Fomin, 1970)

d
dtn+1

/ Y(O)o(t)dt = Yy 10(tys). N

n

Let us write explicitly the strain functional ¥, associated to the increment of mechanical work (36)

€n+tl dw
W = By — B, + / V(o) g de+ 7, (39)
where interchangeability of the time-like parameter with the strain has been assumed and € = €(¢) varies
from €, to €,,,.This is possible if € in # (26) is an invertible function of 7. By multiplying by |, ., both
sides of Eq. (38), one gets:

dAI dw
1 = Ipyl 4 (40)
dE n+l dE n+l
Therefore, by differentiating the strain functional ¥,,; with respect to €,
dv dw dw
E » = (1 - wn+1)Een+l — Y. E n+1 E (41)
n n+l n+1

leads to the stress—strain law (1). So ¥, turns out to be the strain energy associated to the stress a,,; along
those strain paths in 2 such that the strain-time dependence is invertible. That solves Problem P2. Note
that the tangent tensor H,,; can be calculated as

de dw

Hn+1 =7 = (1 - wn+1)[E - [E€n+1 &K =

de de (42)

n+1 n+1

The positive definiteness of the tangent elastoplastic tensor ensures stability of the material. However, in
the case of softening stress—strain laws, the tangent tensor H,,; is not expected to be positive definite.
Explicit expressions of the tangent tensor analogous to Eq. (42) were derived in Lubarda and Krajcinovic
(1995) starting from rate-type constitutive relationships and in the more general case of anisotropic damage
for quasi brittle materials.

4. Potential existence and associativity
A directionally differentiable functional ¥(e) is the strain potential of a(e€) if and only if 6(€) = V¥(e),

where V¥ (e) denotes the gradient of ¥ at €. Existence of a strain potential and associativity of the damage
evolution can be deduced as a consequence of the major symmetry property of the tangent tensor (Hill,
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1959). The problem whether the strain energy ¥ associated to the strain & represents the strain potential of
¢ can be studied as an inverse problem in the calculus of variations. According to Oden and Reddy (1976), a
necessary and sufficient condition for ¢ to be potential is that the bilinear functional de (e, €) - €2, Where oo
denotes the directional differential da(€; €;) of ¢ at € in the direction €, is symmetric with respect to €, and
€, for each €:

oc(€;€) - €2 = da(€;€) - €. (43)
If the symmetry condition (43) holds, then the strain functional ¥,,; Eq. (39) is also an incremental

potential for the stress a,,; (22) and it is independent of the chosen path of integration (Lubarda and
Krajcinovic, 1995). The directional differential de(€; €;) calculates as

oc(€;€1) = g(a’(e—i—tel)) = — (d—w~el>[Ee+(1 —w(e+te))| Ee. (44)
dt =0 de =0
Therefore, by the symmetry of E
dw
oo(€;€) € = — 3 G)e Ee + (1 — w(e))e; - Ee, (45)
€
where i #£ j, i,j = 1,2. By Eq. (45) and by the symmetry of F, Eq. (43) holds if an only if
dw dw
(a-ﬂ)(e-[&z): (E-ez)(e-[Eel) (46)

for any €; and €,. Eq. (46) is equivalent to state that the fourth order tensor ‘C‘l—"; ® [Ee exhibits major sym-
metry:

do do

—QFe=Fe®—. 47

de @ ke €w de (47)

Eq. (47) implies the symmetry of both the stress tensor t (36) and the tangent modulus of the constitutive

stress—strain law (22) H,,, ;. The major symmetry of the algorithmic tangent tensor H, . plays an important
role in the choice of the equation solver in numerical computations of boundary value problems. In par-
ticular, the symmetry condition (47) holds when:

o the strain tensor reduces to a scalar;
e the second order tensors ‘(11—‘6" and [Ee are coaxial.

The first assertion is trivial, the second circumstance is commented in the section below.

4.1. Associative damage

Coaxiality of the tensors % and Ee means here that

6 6
c(ll_(: => e, Fe=> Pei, (48)
i P

where e; is an orthonormal basis of S, the space of the symmetric second order tensors. In a standard GSM
framework, Carol et al. (1994) have shown that the above coaxiality condition (47) implies associativity of
the damage law in the strain space. Damage flux laws of associative type occur when the increment of the
damage is proportional to the gradient of the damage surface. This simplification is generally not
acceptable in the presence of materials with a highly dilatant behavior such as geomaterials. In the latter
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case, nonassociative damage flux laws should be considered and the results reported in this section do not
hold.
The following equivalent strain definitions:

o ¢ =mY (Ju, 1989; de Borst et al., 1997),
e ¢ =mv2Y (Simo and Ju, 1987),

where m is a positive scalar, satisfy the coaxiality (symmetry) condition (47) and thus imply associative
damage. Other examples of models where the equivalent strain definition fulfils the coaxiality condition (47)
can be found in Benallal et al. (1986) and Neilsen and Schreyer (1992). As pointed out in Carol et al. (1994),
the equivalent strain definitions of Egs. (4) and (5) do not satisfy the symmetry condition (47). Let the
coaxiality condition be satisfied by assuming

— = uFe. 49
- = oke (49)
In Eq. (49), according to the hypothesis of holonomic behavior within the strain-step, « is any positive
real number, such that « vanishes when @ vanishes and is greater than 0 when @ does not vanish. Eq. (49)
ensures that the damage evolution is of associative type. Then, the integral term AI" (37)

€n+1 1
/ aYEede = Ea(YnZH -Y) (50)

results to be path-independent. In synthesis, when the above coaxiality condition (49) holds, the increment
of the mechanical work along a strain path is path-independent, but depends only on the initial and final
value of the strain. Moreover, the increment can be written as

_ ) AD+ia(Yr, Y2 if & >0,
M_{Aq’) if &= 0 (51)
along holonomic damaging steps. By the hypothesis (49),

dvy
On+l = de

dy
= (1 7(1)”+1)7

de

_do
de

oadY
Yo + Y “de = (1 — wy41)Ee€py1, (52)

n+1

n+l1 n+1 n+1

so that AY (51) is the potential of the stress g, .

5. Strain radial paths as minimizers of A

In associative hardening elastoplasticity, the standard predictor—corrector scheme can be deduced from a
convex minimization problem where the positive definiteness of the tangent modulus and the convexity of
the complementarity energy are assumed (Simo and Hughes, 1997). On the contrary, this result cannot be
extended to nonassociative hardening plasticity and softening plasticity. In the present class of softening
elastodamaging materials, positive definiteness of the tangent tensor is not ensured and the strain energy
can be nonconvex, so that it is not simple to find an explicit expression of the complementary energy.
However, here, some results are presented which do not require positive definiteness of the tangent modulus
and global convexity of the change of mechanical work. In particular, it is shown that the path dependent
term AI' can be minimized along a radial strain path provided that suitable additional conditions are
satisfied. This result agrees with the radial path lemma proposed by Nguyen (1993) in the space of the
internal variables and later extended by Petryk (2002).
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An indirect strain path is considered starting from €, and leading to the final strain increment
Ae = €,,1 — €,. Following an analogous procedure in Petryk (2002), let us linearize the path-dependent
term around ¢, as follows:

T €=1, €+ Ae- ? €+ o(||Ae|), (53)
€ n

where 1, = t(€,). So the change AI' can be split into a first-order and a second-order contribution
AT = AT + AT + o(||Af|)?), (54)

where

dr

2} Int1
AIF:/ T, - €(¢)dt, AZF:/ Ae - I (1) de. (55)
th ty

En

Attention is now focused on the argument of the second order term A,I’

dz| . dr| . “dr| )
2Ae - de nG(t) = e ne(f) 'A€+/tn de ne(f) - €(s)ds
de| . “dr| .
= ne(t) - Ae +/t,, ae ne(s) -€(t)ds + T, (56)
where
"/dr| . . dr| . .
ro= [ (] @00 - 5| e0-e0 ) as (57)

Furthermore, by the application of the Leibniz’s rule it follows from (56) that

m_li/tﬁ
o), de

By definitions (55), the second order dissipation writes

1 [™ dr
AT =~ =
2 2/,” de

Let us consider now within the set # the radial strain path

Ae.%

, 1
i €(s) - Aeds + EFQ. (58)

n

&) - AedH—%Fa. (59)

n

€t)=€,+—" (€11 — €). (60)

tn+1 — 1

The path-dependent term evaluated to the second-order along a radial path departing from e,, after
straightforward integration is specified as the sum of

. . 1 dz
AT =1, - Ae, A2F:§Ae- ac nAe. (61)
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It can be proved that:

If the path-dependent function AI satisfies the symmetry condition
r,=0, (62)

where I', is defined by Eq. (57), and the argument of AI' is convex in €, then AT’
evaluated to the second order is minimized on a radial path

AT = AT + ALT + o(||A|). (63)

This can be shown by observing that the path dependent term becomes

Lyt ) 1dz
AF_/,; T,,'Edt‘i’ia

Int1 1
&(1) - Ae(r)dt + o(||At]]*) = / r(en +2Ae> C&(r)de 4 o(||Ad]P).  (64)
n In
Replacing €, with €, + 1 Ae, and by the convexity property of the argument of ATI', it follows that

1 1
AT > t(e,, + EAG) ‘Ae+o(||Ar*) =z, - A+ g Ae- Ae + of||Ar]?), (65)
which in view of Eq. (61) proves Eq. (63).

Let us define the change of strain energy along a radial path

A" = A® + AT + AT + of||At]]%). (66)

If Eq. (63) holds, in view of the fact that A® is path-independent, the increment of mechanical work AY in
A is never less than the the increment of mechanical work evaluated on a radial strain path

(67)

Eq. (67) holds if the argument of Al is convex in € for every €, and under hypothesis (62). Therefore, it
has been shown that among all possible strain paths emanating from €, to €,,; and belonging to s, the
radial strain path €" realizes the minimum change of the mechanical work AY in the set #. However,
although radial strain paths have been shown to be less energy-consuming than nonradical paths, they can
still be unstable. Thus stability theorems such as the ones applied in Nguyen (1993) and Petryk (2002)
cannot be applied to the present class of materials.

Moreover, it is possible to establish a relationship between the symmetry condition (62) and the coax-
iality condition (49) for the existence of a strain potential. To this purpose, let us observe that the rate of the
stress T can be written as

t = Z¢, (68)
where Z denotes the tangent tensor associated to the stress t
dw d’w
7=—QE+Y—. 69
de @het de? (69)
The symmetry condition (62) can be rewritten as

t t
[ et ds= [ otetsnewyas (70)

ty In

which is equivalent to a weak condition for the potential of the stress 7 to exist along the step [¢,,¢]. In
particular, if the fourth order tensor Z is symmetric, then Eq. (70) holds; suppose in addition that the
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d 0}

matrix ¥ is symmetric, then the tensor 2 do 2 @ Ee is symmetric. The converse is not generally true, i.e. the only
symmetry of the tangent tensor H (47) does not imply the symmetry of the tangent tensor Z (69). In
concluswn the coaxiality condition (49) 1s equlvalent to the symmetry condltlon of the tensor Z (69)

d m

associative damage governed by the coax1a11ty property (49) because $-% results to be proportional to E, the

elasticity tensor.

6. Nonconvex potentials in a one-dimensional case

A monotonic tensile loading history is prescribed for a one-dimensional bar of infinite length. Let the bar
be subject to a positive homogeneous strain state e¢. The loading history is holonomic by hypothesis, that is
the damage is assumed to evolve monotonically during the loading. Hence the stepwise holonomic
approximation is not invoked. The equivalent strain definition (4) is assumed, which specializes here to
€ = e. Because all the quantities involved in Eq. (47) are scalars, the symmetry condition (47) is satisfied.
The damage rule (12) (Peerlings et al., 1996; Geers, 1997)

0 if Ki<€7
w(e) = 1_(§)’3<ﬁ) if 1 < e<kr, (71)
1 if € > k¢

is adopted. According to Eq. (71), the first derivative of the damage becomes

d if6<Ki,

w .

DS 1-o@)(frg) ifn<e<, (72)
if € > k;.

Replacing Egs. (71) and (72) in Eq. (31) the path dependent term with oo = § = 1 writes

0 if € < K,
‘dw 1 - 1 Exrp : if o <e<
— —E 2de = = (6 - KI) I K § €x Ky, (73)
0 d€ 1 Exike

pi— (i — 1) 1f € > K.

Finally, the explicit analytical expression of the strain potential (31) becomes

JE€E if € < K,
'1”(6) = ( ( )) E€ +; ih ]f‘l (6 — Kl) if Kj < € < Kf, (74)
( ( )) E€? +; fk ]f" (Kf - Kl) if € > K;.

The stress conjugated to the strain potential (31) is the expected one

o= ‘;—f = (1 — o(e))Ee (75)

and can be visualized in Fig. 10 (continuous line), where the Young’s modulus £ = 20,000 N/mm?, and the
initial and final thresholds are x; = 0.0002 and x; = 0.0125.

As shown in Fig. 11A and B, in the present one-dimensional example, the strain energy ¥ (74) is convex
in € in the elastic range, when ¢ < k;, and concave in ¢ as soon as the damaging process begins, at € = ;.
Note however that the slope of ¥ at incipient damage is continuous, see Fig. 11B (continuous line). The
strain potential (74) is similar to the strain super-potential considered by Mistakidis and Panagiotopoulos



E. Benvenuti | International Journal of Solids and Structures 41 (2004) 3167-3191

e A ]
l
_E
:
3t ]
!!
!!
!'.
2H ! E
it
(o2 ' \'
1 \
N .
\.
\-
\o
\4
or T .
\» - T
S =
1 . . . . . .
0 1 2 3 4 5 6 7
x107°

3185
oy B) |
'I
I|
'I
35t 1 ]
'I
II
'I
1
3t it .
| 1
| 1
i
| 1
25t | ] 1
| 1
! 1
| 1
L ! 1 4
2 Iv §
! \
| x
0 05 1 15 2
x107°
Kj €

Fig. 10. (A) Strain energies ¥ Eq. (74) (continuous line) and ¥ Eq. (76) (dashed line) versus e in the one-dimensional tensile bar.

(B) Details of ¥ and ¥, versus ¢ at incipient damage in the one-dimensional tensile bar.
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Fig. 11. (A) Stresses 0 = d¥/de (continuous line) and o, = d¥,/de (dashed line) versus the strain € in the one-dimensional tensile bar
(B) Detalil of ¢ and o, versus ¢ at incipient damage; if the integral term (73) is included or neglected, o and o are continuous and

discontinuous at x = k;.

(1998) for a nonmonotonic stress—strain law and to the free energy potential proposed for a microscopic
cohesive stress—displacement law in Nguyen and Ortiz (2002). If convexity is lacking, equilibrium states are
not necessarily stable and the knowledge of the second order variation of the strain potential would be
required to go farther and capture (local) minimizers. In several contexts, nonconvex strain energies have
been recognized to reflect the presence of multiple phases or microstructures, for instance Miche et al.
(2002) and Ortiz and Repetto (1999). The present results highlight the common basis underlying damaging
and multiphase materials.
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8
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Fig. 12. The term 1/2dw/deE€* versus ¢ in the one-dimensional tensile bar with « = 1, and f increasing; the discontinuity at € = k;
reflects the discontinuity of dw/de.

To highlight the practical influence of the argument of the integral at the 1.h.s. of Eq. (73), the latter term
has been plotted in Fig. 12 for fixed « = 1 and f increasing from 1 to 4. A discontinuity occurs at € = k;
which becomes sharper as f§ increases. If the path-dependent term (73) is neglected, the strain function

1
Yi(e) = (1 — co(e))EEe2 (76)
is obtained, see Fig. 11. A detail of the strain function ¥, at incipient damage reveals that its slope changes
at incipient damage, Fig. 11B. The stress conjugated to ¥,

o :%: (1 - w(e))Ee—i—i)%Eez (77)
has been plotted in Fig. 10A (continuous line). As shown in Fig. 10B, o exhibits a discontinuity at incipient
damage due to the discontinuity of the first derivative of the damage (Fig. 9). Consequently, the presence of
AT is necessary in order to reproduce physically consistent stress—strain relationships. Note that in the
GSM context, the free energy functional is usually assumed to be convex in both damage and strain.
Therefore, once one of the variables is fixed, the minimization with respect to the other variable can be
performed (e.g. Florez-Lopez et al., 1994). By the integration of higher order stress—strain laws, in Chang
et al. (2002), strain energies have been obtained where, besides the standard terms, also derivatives of the
damage with respect to the strain appear, but without an explicit analysis of the numerical influence of these
damage derivatives on the stress—strain law.

7. Nonlocal materials

In the context of nonlocal models for elastodamaging materials, many authors have considered the
damage parameter to be governed by nonlocal definitions of the equivalent strain (Pijaudier-Cabot, 1995;
de Borst et al., 1997; Jirdsek and Patzak, 2002). For instance, a nonlocal integral equivalent strain field {€}
can be obtained by an integral average of the local field €
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@0 =775

In Eq. (78), w(x,y) is a weighting function, for instance the Gauss function e
parameter and /¢ indicates a characteristic length over which w vanishes. The symbol

hx) = / w(x,y)dy (79)

is the reference volume. Besides integral models, also several successful formulations based on implicit
gradient techniques have been developed in Peerlings et al. (1996) and Geers (1997) by expanding in Taylor
series the integrand of (78) under the hypothesis that the integration domain is symmetric. The nonlocal
variable {€} is so approximated through the following implicit gradient formula:

/V w(x,y)e(y) dy. (78)

20 —vl12 /2 .
FlIx=yI7/¢  where k is a

{&(x) = e(x) + Ve (x), (80)
together with the boundary conditions
V{e}(x) -n=0, (81)

on the boundary 0V, where V? is the spatial Laplacian operator and c is a diffusive length that is related to
the characteristic length /. In particular, these Authors have proposed multifield formulations where the
nonlocal definition of the equivalent strain is assumed as an independent variable and the implicit gradient
definition (80) is solved together with the equilibrium equation. These multifield formulations based on
implicit gradient formulations are particularly appreciated since they have been revealed to be more
computationally stable than other gradient techniques (Geers, 1997). For instance, approximating {é} by
Eq. (80) as an independent field reduces the occurrence of oscillations of the computed stress profiles with
respect to other (explicit) gradient formulations.

Because both the integral and the derivative operators are linear operators, all the results established in
the previous sections can be extended to the case of nonlocal definitions of the equivalent strain. To this
purpose, let the damage and its threshold be nondecreasing functions of the nonlocal equivalent strain, i.e.,
respectively,

Wyl = max{wna w({g}nﬂ)}a Kn+1 = max{;c,,, {E}/H»l}’ (82)
where {€}(€,.1) = {€},,,. The loading function becomes
8n+1 = {E}nﬂ — Knt1, (83)

where relationships (82) have been assumed.
7.1. An enhanced general variational framework

The results obtained in the previous sections are here embedded into variational formulations for
elastodamaging materials of the nonlocal type. A body is assumed obeying an elastodamaging stress—strain
law, where the damage and its threshold are governed by the nonlocal equivalent strain according to Egs.
(82) and (83). The strain energy function (23) writes

w1 dw 0fe)

Voo = (1= o)l = (= o)r+ [ 58 S vde v v, (84)
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Let us consider the nonlocal relationships of integral and implicit gradient type (78) and (80) and define a
nonlocal functional # of the strain

Pl fV ,y €n+1( ))dy7
R(€n1)(X) = {{6}(€;1+1( ) = €(€,11(x)) + AV {e}(€,.1(x)) inV, )

where the first alternative refers to an integral nonlocal relationship whereas the second one describes an
implicit gradient formulation. In definition (85), the strain function €,,, is any of the equivalent strain
definitions reported in Section 2, and the field {€}, , is assumed to be an additional independent variable.
Let us omit below the x-dependence of the nonlocal operators. The equality

{e}1 = #(enn) (86)

represents a constraint between the nonlocal field {€},., and the strain field €,.;. It is then possible to
introduce a multifield functional containing the strain functional (39) where the constraint (86) is weakly
enforced by a Lagrangian multiplier field 4,,;. So the following Lagrangian functional depending on

Xn+1 = (un+l y €nt1,0n+1, {E}n+1’ j-n+1)

LX) = F Ko) + [ 20es({E)y1 = Rler)) AV (87)

can be considered. In Eq. (87),

€n+tl dCl)
F (Xps1) = / D, — D, +/ aYdE + ¥, = by g+ 0,0 (VU —€,0)dV (88)
v &

is the Hu—Washizu functional (23) written in the case of nonlocal definition of the equivalent strain, and, by

the chain rule, 92 = 2o g Equating to zero the first variations of function (87) leads to the weak forms of

> de = 0{e} Oe
the stationarity equations

0L Xputi) = [ 0101+ Vi) ~ by -V =0, (89)
v
5$(Xn+l; é) = / (1 - G)n+])[E€n+l + d_w Yn+1 —Opt1 — j'n+1 % -edV = 07 (90)
v de de
n+1 n+1
5$(X,,+1;6') = /(vsurH»l - 6n+1) cedlV = 07 (91)
Vv
. 0w =
5L Xy i {6}) :/ 000y s JEdr =0, (92)
v 6{6} n+1
82X 1) = [ (€~ Rlenn) 2V =0, (93)
for any admissible set of variations (i, €,4,¢,4). The strong forms of the stationarity conditions of %

realize Problem P3 below:
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P3. Find X, ; such that on V:
diVO—nJrl + bn+1 = 07

ow o{e} d%(€)
et Oe de ’

n+1 n+1 n+l

6,01 = (1 —w,41)E€py + Yiit = Zns1

s
\Y U1 = €441,

, ow

Aptl = @ Yn+17
n+1

{E}}H—l = '%(en+l)7

where Wyy) = max{wn, a)({g}n+1)}'

3189

(94a)

(94b)

(94c¢)

(94d)

(94e)

By replacing Eqgs. (94d) and (94¢) in Eq. (94b), the stress a,,; Eq. (22) is recovered. Thus, the system of

Eq. (94) condenses into the concise form:

P4. Find X, such that on V'
diVGn-H + bn+1 = 07

{E}nJrl — R(€r1) =0,
where
® Oy = (1 - a)n+1)|E€n+la
b vsun+1 =€,
o w,1 = max{w,, o({e},,)}-

(95a)

(95b)

The above Lagrangian formulation can be discretized according to the FE method and leads to a
symmetric solving system (Benvenuti et al., submitted for publication). It can be also shown that the
boundary condition (81), typically assumed in the implicit gradient formulations, can be obtained via
variational arguments from the stationarity conditions of the Lagrangian functional (87). The same set of
equations of Problem P4 has been proposed in a broad number of multifield formulations of implicit
gradient type by Peerlings et al. (1996) and Geers (1997). Consequently, the Lagrangian approach presented

in this section can provide a variational basis for these existing formulations.

8. Conclusions

At a material point, a relationship between total damage and total strain is deduced by considering a
stepwise holonomic damage evolution. By integrating the mechanical work in the strain space, the fol-

lowing results have been reached.
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¢ Incremental strain energies have been determined for elastodamaging materials; in particular, a path-
independent strain energy has been obtained under the hypothesis of associative damage evolution (Sec-
tions 3 and 4).

e A coaxiality condition for the incremental strain energy to be potential has been derived, and its connec-
tions with the associativity of the damage evolution have been discussed (Section 4).

e Among all admissible strain paths, the radial one has been shown to minimize the increment of the
mechanical work in the strain space, provided that a suitable additional symmetry condition, anyway
related to the coaxiality condition, is fulfilled (Section 5).

e For a one-dimensional bar under a strictly monotonic loading, the present elastodamaging materials
may be regarded as nonlinear elastic materials with nonconvex strain energy, in analogy with microstruc-
tured and geometrically nonlinear materials (Section 6).

e A new multifield Lagrangian formulation has been presented providing a unified variational framework
for nonlocal materials (Section 7).
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